Зарядное устройство для автомобильного аккумулятора на tl494. Зарядное устройство для автомобильного аккумулятора на TL494 - Самоделкин - сделай сам своими руками - схемы

Индукционная плавильная печь применяется для плавления металлов и сплавов уже на протяжении последних нескольких десятилетий. Устройство получило широкое распространение в металлургической и машиностроительной областях, а также в ювелирном деле. При желании простую версию этого оборудования можно изготовить своими руками. Рассмотрим принцип работы и особенности применения индукционной печи подробнее.

Принцип индукционного нагрева

Для того чтобы металл перешел из одного агрегатного состояния в другое требуется нагреть его до достаточно высокой температуры. При этом у каждого металла и сплава своя температура плавления, которая зависит от химического состава и других моментов. Индукционная плавильная печь проводит нагрев материала изнутри при создании вихревых токов, которые проходят через кристаллическую решетку. Рассматриваемый процесс связан с явлением резонанса, который становится причиной увеличения силы вихревых токов.

Принцип действия устройства имеет следующие особенности:

  1. Пространство, которое образуется внутри катушки, служит для размещения заготовки. Использовать этот метод нагрева в промышленных условиях можно только при условии создания большого устройства, в которое можно будет поместить шихту различных размеров.
  2. Устанавливаемая катушка может иметь различную форму, к примеру, восьмерки, но наибольшее распространение получила спираль. Стоит учитывать, что форма катушки выбирается в зависимости от особенностей заготовки, подвергаемой нагреву.

Для того чтобы создать переменное магнитное поле устройство подключается к бытовой сети электроснабжения. Для повышения качества получаемого сплава с высокой текучестью применяются высокочастотные генераторы.

Устройство и применение индукционной печи

При желании можно создать индукционную печь для плавки металла из подручных материалов. Классическая конструкция имеет три блока:

  1. Генератор, который создает ток высокой частоты переменного типа. Именно он создает электрический ток, преобразующийся в магнитное поле, проходящее через материал и ускоряя движение частиц. За счет этого происходит переход металла или сплавов из твердого состояния в жидкое.
  2. Индуктор отвечает за создание магнитного поля, которое и нагревает металл.
  3. Тигель предназначен для плавки материала. Он помещается в индуктор, а обмотка подключается к источникам тока.

Процесс преобразования электрического тока в магнитное поле сегодня применяется в самых различных отраслях промышленности.

К основным достоинствам индуктора можно отнести нижеприведенные моменты:

  1. Современное устройство способно направлять магнитное поле, за счет чего повышается КПД. Другими словами, проходит нагрев шихты, а не устройства.
  2. За счет равномерного распространения магнитного поля заготовка нагревается равномерно. При этом с момента включения устройства до плавки шихты уходит небольшое количество времени.
  3. Однородность получаемого сплава, а также его высокое качество.
  4. При нагреве и плавлении металла не образуются испарения.
  5. Сама установка безопасна в применении, не становится причиной образования токсичных веществ.

Существует просто огромное количество различных вариантов исполнения самодельных индукционных печей, каждая имеет свои определенные особенности.

Виды индукционных печей

Рассматривая классификацию устройств, отметим, что нагрев заготовок может проходить как внутри, так и снаружи катушки. Именно поэтому выделяют два типа индукционных печей:

  1. Канальная. Подобного рода устройство имеет небольшие каналы, которые расположены вокруг индуктора. Для генерации переменного магнитного поля внутри расположен сердечник.
  2. Тигельная. Эта конструкция характеризуется наличием специальной емкости, которую называют тигель. Изготавливается она из тугоплавкого металла с высоким показателем температуры плавления.

Важно, что канальные индукционные печи обладают большими габаритными размерами и предназначаются для промышленного плавления металла. За счет непрерывного процесса плавки можно получать большой объем расплавленного металла. Канальные индукционные печи применяются для плавки алюминия и чугуна, а также других цветных сплавов.

Тигельные индукционные печи характеризуются относительно небольшими размерами. В большинстве случаев подобного рода устройство применяется в ювелирном деле, а также при плавке металла в домашних условиях.

Создавая печь своими руками можно провести регулировку мощности, для чего изменяется количество витков. Стоит учитывать, что при повышении мощности устройства требуется более емкая батарея, так как повышается показатель энергопотребления. Для того чтобы снизить температуру основных элементов конструкции устанавливается вентилятор. При длительной эксплуатации печи ее основные элементы могут существенно нагреваться, что стоит учитывать.

Еще большое распространение получили индукционные печи на лампах. Подобную конструкцию можно изготовить самостоятельно. Процесс сборки имеет следующие особенности:

  1. Медная трубка применяется для создания индуктора, для чего ее сгибают по спирали. Концы также должны быть большими, что требуется для подключения устройства к источнику тока.
  2. Индуктор следует поместить в корпусе. Изготавливается он из термостойкого материала, который может отражать тепло.
  3. Проводится соединение каскадов ламп по схеме с конденсаторами и дросселями.
  4. Выполняется подключение неоновой лампы-индикатора. Она включается в схему для обозначения того, что устройство готово к работе.
  5. В систему подключают подстроечный конденсатор переменной емкости.

Важным моментом является то, как можно провести охлаждение системы. При работе практически всех индукционных печей основные элементы конструкции могут нагреваться до высокой температуры. Промышленное оборудование имеет систему принудительного охлаждения, которое работает на воде или антифризе. Для того чтобы создать конструкцию водяного охлаждения своими руками требуется довольно много средств.

В домашних условиях устанавливается система воздушного охлаждения. Для этого устанавливаются вентиляторы. Следует располагать их так, чтобы обеспечивать беспрерывный поток холодного воздуха к основным элементам конструкции печи.

В статье рассмотрены схемы промышленных индукционных плавильных печей (канальных и тигельных) и индукционных закалочных установок с питанием от машинных и статических преобразователей частоты.

Схема индукционной канальной печи

Почти все конструкции промышленных индукционных канальных печей выполняются с отъемными индукционными единицами. Индукционная единица представляет собой электропечной трансформатор с футерованным каналом для размещения расплавленного металла. Индукционная единица состоит из следующих элементов, кожуха, магнитопровода, футеровки, индуктора.

Индукционные единицы выполняются как однофазными, так и двухфазными (сдвоенными) с одним или двумя каналами на один индуктор. Индукционная единица подключается ко вторичной стороне (стороне НН) электропечного трансформатора с помощью контакторов, имеющих дугогасящие устройства. Иногда включаются два контактора с параллельно работающими силовыми контактами в главной цепи.

На рис. 1 приведена схема питания однофазной индукционной единицы канальной печи. Реле максимального тока РМ1 и РМ2 служат для контроля и отключения печи при перегрузках и коротких замыканиях.

Трехфазные трансформаторы используются для питания трехфазных или двухфазных печей, имеющих либо общий трехфазный магнитопровод, либо два или три отдельных магнитопровода стержневого типа.

Для питания печи в период рафинирования металла и для поддержания режима холостого хода служат автотрансформаторы для более точного регулирования мощности в период доводки металла до нужного химического состава (при спокойном, без бурления, режиме расплавления), а также для начальных пусков печи при первых плавках, которые проводятся при малом объеме металла в ванне для обеспечения постепенной сушки и спекания футеровки. Мощность автотрансформатора выбирают в пределах 25-30% мощности основного трансформатора.

Для контроля температуры воды и воздуха, охлаждающих индуктор и кожух индукционной единицы, устанавливают электроконтактные термометры, выдающие сигнал при превышении температуры свыше допустимой. Питание печи автоматически отключается при повороте печи для слива металла. Для контроля положения печи служат конечные выключатели, сблокированные с приводом электропечи. У печей и миксеров непрерывного действия при сливе металла и загрузке новых порций шихты отключение индукционных единиц не производится.


Рис. 1. Принципиальная схема питания индукционной единицы канальной печи: ВМ - выключатель мощности, КЛ - контактор, Тр - трансформатор, С - конденсаторная батарея, И - индуктор, ТН1, ТН2 - трансформаторы напряжения, 777, ТТ2 - трансформаторы тока, Р - разъединитель, ПР - предохранители, РМ1, РМ2 - реле максимального тока.

Для обеспечения надежного питания при эксплуатации и в аварийных случаях приводные двигатели механизмов наклона индукционной печи, вентилятора, привод загрузочно-разгрузочных устройств и системы управления питаются от отдельного трансформатора собственных нужд.

Схема индукционной тигельной печи

Промышленные индукционные тигельные печи емкостью более 2 т и мощностью свыше 1000 кВт питаются от трехфазных понижающих трансформаторов с регулированием вторичного напряжения под нагрузкой, подключаемых к высоковольтной сети промышленной частоты.

Печи выполняют однофазными, и для обеспечений равномерной нагрузки фаз сети в цепь вторичного напряжения подключают симметрирующее устройство, состоящее из реактора L с регулированием индуктивности методом изменения воздушного зазора в магнитной цепи и конденсаторной батареи Сс, подключаемых с индуктором по схеме треугольника (см. АРИС на рис. 2). Силовые трансформаторы мощностью 1000, 2500 и 6300 кВ-А имеют 9 - 23 ступени вторичного напряжения с автоматическим регулированием мощности на желаемом уровне.

Печи меньших емкости и мощности питаются от однофазных трансформаторов мощностью 400 - 2500 кВ-А, при потребляемой мощности свыше 1000 кВт также устанавливают симметрирующие устройства, но на стороне ВН силового трансформатора. При меньшей мощности печи и питании от высоковольтной сети 6 или 10 кВ можно отказаться от симметрирующего устройства, если колебания напряжения при включении и выключении печи будут находиться в допустимых пределах.

На рис. 2 приведена схема питания индукционной печи промышленной частоты. Печи снабжаются регуляторами электрического режима АРИР, которые в заданных пределах обеспечивают поддержание напряжения, мощности Рп и cosфи путем изменения числа ступеней напряжения силового трансформатора и подключения дополнительных секций конденсаторной батареи. Регуляторы и измерительная аппаратура размещены в шкафах управления.


Рис. 2. Схема питания индукционной тигельной печи от силового трансформатора с симметрирующим устройством и регуляторами режима печи: ПСН - переключатель ступеней напряжения, С - симметрирующая емкость, L - реактор симметрирующего устройства, С-Ст - компенсирующая конденсаторная батарея, И - индуктор печи, АРИС - регулятор симметрирующего устройства, АРИР - регулятор режима, 1K-NK - контакторы управления емкостью батареи, ТТ1, ТТ2 - трансформаторы тока.

На рис. 3 приведена принципиальная схема питания индукционных тигельных печей от машинного преобразователя средней частоты. Печи оснащены автоматическими регуляторами электрического режима, системой сигнализации «проедания» тигля (для высокотемпературных печей), а также сигнализацией о нарушении охлаждения в водоохлаждаемых элементах установки.


Рис. 3. Схема питания индукционной тигельной печи от машинного преобразователя средней частоты со структурной схемой автоматического регулирования режима плавки: М - приводной двигатель, Г -генератор средней частоты, 1K-NK - магнитные пускатели, ТИ - трансформатор напряжения, ТТ - трансформатор тока, ИП - индукционная печь, С - конденсаторы, ДФ - датчик фазы, ПУ - переключающее устройство, УФР - усилитель-фазорегулятор, 1КЛ, 2КЛ - линейные контакторы, БС - блок сравнения, БЗ - блок защиты, ОВ - обмотка возбуждения, РН - регулятор напряжения.

Схема индукционной закалочной установки

На рис. 4 приведена принципиальная электрическая схема питания индукционного закалочного станка от машинного преобразователя частоты. Помимо источника питания М-Г схема включает в себя силовой контактор К, закалочный трансформатор ТрЗ, на вторичную обмотку которого включен индуктор И, компенсирующую конденсаторную батарею Ск, трансформаторы напряжения и тока ТН и 1TT, 2ТТ, измерительные приборы (вольтметр V, ваттметр W, фазометр) и амперметры тока генератора и тока возбуждения, а также реле максимального тока 1РМ, 2РМ для защиты источника питания от коротких замыканий и перегрузок.

Рис. 4. Принципиальная электрическая схема индукционной закалочной установки: М -приводной двигатель, Г - генератор, ТН, ТТ - трансформаторы напряжения и тока, К - контактор, 1PM, 2РМ, ЗРМ - реле тока, Рк - разрядник, А, V, W - измерительные приборы, ТрЗ - закалочный трансформатор, OВГ -обмотка возбуждения генератора, РР - разрядный резистор, РВ - контакты реле возбуждения, PC - регулируемое сопротивление.

Для питания старых индукционных установок для термообработки деталей используют электромашинные преобразователи частоты - приводной двигатель синхронного или асинхронного типа и генератор средней частоты индукторного типа, в новых индукционных установках - статические преобразователи частоты.

Схема промышленного тиристорного преобразователя частоты для питания индукционной закалочной установки показана на рис. 5. Схема тиристорного преобразователя частоты состоит из выпрямителя, блока дросселей, преобразователя (инвертора), цепей контроля и вспомогательных узлов (реакторов, теплообменников и пр.). По способу возбуждения инверторы выполняются с независимым возбуждением (от задающего генератора) и с самовозбуждением.

Тиристорные преобразователи могут устойчиво работать как с изменением частоты в широком диапазоне (при самонастраивающемся колебательном контуре в соответствии с изменяющимися параметрами нагрузки), так и при неизменной частоте с широким диапазоном изменения параметров нагрузки в связи с изменением активного сопротивления нагреваемого металла и его магнитных свойств (для ферромагнитных деталей).


Рис. 5. Принципиальная схема силовых цепей тиристорного преобразователя типа ТПЧ-800-1: L - сглаживающий реактор, БП - блок пуска, ВА - выключатель автоматический.

Преимуществами тиристорных преобразователей являются отсутствие вращающихся масс, малые нагрузки на фундамент и малое влияние коэффициента использования мощности на снижение КПД, КПД составляет 92 - 94% при полной нагрузке, а при 0,25 снижается только на 1 - 2%. Кроме того, поскольку частота может быть легко изменена в определенном диапазоне, нет необходимости регулирования емкости для компенсации реактивной мощности колебательного контура.

1. Теория.
Нагрев происходит за счет перемагничивания ферромагнетика, а не токов Фуко/Эдди/вихревых в сковороде, ибо при использовании только токов Фуко, в самой плите будет выделяться большее количество тепла или конструкция будет очень сложной с медными трубками. Все что дальше написанное, взято из pdf onsemiconductor, holtek и fairchild. На практике не проверял, по этому могу заблуждаться. Упрощенная схема индукционной плитки.

Cbus - конденсатор для стабилизации напряжения питания в течении одного периода колебательного процесса, 4...8мкФ;
Сr - резонансный конденсатор, 0.2...0.3мкФ;
Lr - индуктор, 100мкГн;
T1/D1 - IGBT типа IHW20N120R2, FGA15N120ANTD, IRGP20B120UD (Vces=1200V/Ic=15A/Toff+Tf=400нС/Vsat=1.6 V).

Какие процессы происходят, я отобразил на таком графике.

Цикл работы состоит из двух больших этапов: заряд индуктора линейнонарастающим током через открытый транзистор/диод и затухающего колебательного процесса при закрытом транзисторе. Которые можно разделить на несколько малых тактов.

  1. Затухающий колебательный процесс при закрытом транзисторе. Исходное состояние здесь всегда одно и тоже: Cr заряжен до уровня Ubas, ибо он всегда, мгновенно, заряжается до уровня Ubas при открывании IGBT.
    1. Cr разряжается на индуктор : ток через индуктор и напряжение на коллекторе IGBT нарастает до Ubas, ибо Uce=Ubas-Ucr.
    2. Индуктор разряжается на Cr: ток через индуктор уменьшается, а напряжение на коллекторе IGBT растет до максимального возможного значения. Это значение пропорционально времени открытого состояния транзистора.
    3. Cr разряжается на Lr до напряжения Ubas : ток индуктора растет, а напряжение коллектора IGBT падает до 0. Когда напряжение на коллекторе станет меньше нуля - откроется встречный диод IGBT.
  2. Линейный процесс накачки индуктора. Исходное состояние здесь всегда одно и тоже: Cr заряжен до уровня Ubas, ибо при этом уровне заряда напряжение на встречном диоде переходит через ноль. Если отпирающий импульс на затвор транзистора придет раньше отпирания диода или когда диод уже закроется, т. е. резонансный конденсатор не зарядится до Ubus или уже разрядится на индуктор, то в начальный момент времени через транзистор пройдет большей ток и он будет сильно греться. Что плохо скажется на надежности. На этом этапе Cr всегда заряжен до уровня Ubas, а напряжение на коллекторе близко к 0.
    1. Ток индуктора идет через встречный диод : ток через индуктор линейно падает до нуля. В это оптимальное время подавать отпирающий импульс на затвор.
    2. Ток индуктора идет через IGBT : ток через индуктор линейно нарастает. В это время надо вовремя закрыть транзистор, что бы индуктор не накопил энергии достаточной для пробоя транзистора при такте 1.2.
Следствия.
  1. Мощность регулируют при помощи изменения длительности пачки импульсов, ибо ШИП регулировать сложно: момент включения транзистора определяется переходом через ноль напряжения коллектора, а момент выключения максимальным возможным напряжением на коллекторе, то есть частота и скваженность связаны обратной зависимостью и регулировать ими мощность простым способом не получиться.
  2. Если на плите нет посуды, то это может вывести из строя транзистор из-за повышения максимального напряжения (Cr зарядится до большего напряжения). Для предотвращения этого, каждые две секунды проводят процедуру контроля наличия сковороды: подают затравочный импульс, а потом считают сколько циклов будет затухать колебательный процесс. Если больше 3 - значит посуды нет и надо выключать плиту.
  3. Самый тяжелый - первый импульс, ибо тогда заряжается Cr через IGBT.

2. Силовая схема.


Назначение элементов:
Li - ферритовый тор, надетый на сетевой провод, служит для подавления синфазных помех. В большинстве случаев его нет;
FUSE - предохранитель;
С1 - конденсатор фильтрации импульсных помех, в большинстве случаев его нет;
R1 - резистор для разряда C1 после отключения питания;
D1, D2 - выпрямитель для ИИП и контроля напряжения сети (для расчета мощности и защиты от перенапряжения);
RJ - шунт в виде куска толстого провода;
L1 - фильтр от импульсных помех, чаще всего его нет;
С2 - конденсатор для возможности возврата энергии колебательного контура с индуктором в промежуточный контур постоянного тока Ubas;
С3 - резонансный конденсатор, нужен для обеспечения непрерывного тока после запирания транзистора;
Lr1 - индуктор, служит для передачи энергии в посуду;
T1 - IGBT транзистор, нужен для преобразования постоянного тока в переменный;
R2 - резистор, предназначенный для гарантированного нахождения транзистора в запертом состоянии после включения;
R3 - резистор, предназначенный для подавления высокочастотного тока на затворе;
Uoutlet - выпрямленное напряжение в сети;
Ush - контроль тока для защиты от перегрузки;
Uce - контроль напряжения на коллекторе IGBT, служит защиты от перенапряжения и совместно с Ubas определяет момент включения IGBT;
Ubus - служит для определения момента включения IGBT.

Теорию работы я описал раньше, поэтому повторяться не буду.

3. Драйвер.


Назначение элементов:
D2 - не дает проседать 18V при уменьшении 18V на выходе ИИП, вместо диода может быть резистор сопротивлением 51 Ом или вообще ничего не быть;
С2 - стабилизация напряжение питания драйвера, может не быть;
R3, T4, R2, T3 - два каскада усиления с общим эмиттером;
T1 и T2 - эмитерный повторитель;
D1 - не дает подняться напряжению на выходе выше 18V;
R1 - ограничивает ток заряда затвора IGBT;
R5 - увеличивает входное сопротивление драйвера, необходимо для защиты выхода контроллера;
R4 - служит для канализации тока утечки T4;
С1 - ускоряет процесс переключения T4.

4. Источник Импульсного Питания 5 и 18 Вольт.
Они делаются по двум схемам: обратноходового преобразователя и прямоходового. В обоих случаях используются одни и теже компоненты: микросхема ШИП (ШИМ/PWM со встроенным ключом, чаще всего Viper12A), 78L05, трансформатор, резисторы и конденсаторы.

В обоих схемах S1 - это термопредохранитель упирающийся на теплостойкую крышку плитки. Часто его не бывает; R1 - служит для фильтрации (это если судить по схеме в datasheet samsung: там вместо резистора стоит дроссель на 300 мкГн) или как предохранитель (так написано у stm).

4.1. Обратноходовой преобразователь (flyback converter).

4.2 Прямоходовой преобразователь (Double Output Buck Converter) на тех же элементах.

Схема содрана у STM (AN1514, 3 страница), с точностью до номиналов используется в alaska ic1800. .


Несколько схем из AN1514.



5. Контроль напряжения на индукторе.
Несмотря на то, что IGBT надо открывать когда напряжение на коллекторе (Uce) чуть ниже нуля (когда открыт встроенный в него обратный диод), этот момент времени определяется не через пересечение этим напряжением нуля, а при помощи сравнения его с напряжением промежуточного контура постоянного тока (Ubus), с последующей задержкой. Напряжения сравниваются в встроенном в управляющую микросхему компараторе.
Еще этот компаратор используется для определения наличия сковороды: раз в 2 секунды открывается IGBT на 1 мС, а потом считаются колебания до полного их затухания, если их будет больше 3...24, то значит сковороды на плитке нет. Поэтому здесь используются два делителя, которые приводят входные напряжения около 1200V к величинам меньше 5V (напряжение питания управляющей микросхемы).
Дополнительно напряжение на коллекторе подается на аналоговый вход управляющей мс, для защиты от перенапряжения. Поэтому это напряжение делится еще в 1.5-3 раза. Хотя этого дополнительного делителя может и не быть.
Так как напряжение в 1200V пробьет любой одиноко стоящий резистор, то в верхних плечах делителя используют 2 или 3 последовательно включенных резистора на 1-2Вт, но так как Ubas сильно больше 300V быть не может, то в верхнем плече делителя Ubus на один или два резистора меньше ставят. На выходе делителей, последовательно с входами ic могут быть по резистору на 100-39000 Ом, вероятно, они нужны для дополнительной фильтрации помехи. В результате получается такая схема.

6. Контроль напряжения в сети.
В принципе - это тоже самое Ubus, но измеренное до выпрямителя. Используется для замера мощности и защиты от перенапряжения. Для обоих целей используются разные делители напряжения: выход одного делителя идет на вход АЦП, а другого на вход компаратора. Схемы делителей похожи предыдущие. Только напряжение на входе АЦП сильно усредняется конденсатором большой емкости.


Для экономии одного большого резистора, они могут на делитель подключенный к компоратору подавать постоянное напряжение подавать с делителя подключенного к АЦП через маленький резистор (это напряжения заведомо меньше 5V), а переменку через конденсатор.

7. Контроль тока.
Для контроля тока используется встроенный в управляющую микросхему операционный усилитель. То есть для этой схемы нужны два вывода: вход ОУ и его выход. В некоторых плитках еще используется встроенный компаратор для защиты по току. Схема понятна без пояснений.

8. Контроль температуры igbt.
Под igbt, при помощи резинки, вплотную прижат терморезистор. Он нужен для контроля температуры igbt.

Схема - обычный делитель напряжения, в одном плече которого стоит NTC термистор типа 3950-100k.

Рекомендуемая samsung логика контроля:
-температура выше 85° - понижаем мощность;
-температура выше 90° - выключаем плиту.

9. Контроль температуры поверхности.
Схема идентична предыдущей, только термистор прижат к поверхности плиты. Где находится термистор.

10. Пищалка и вентилятор.
Они могут управляться от отдельных выходов управляющей микросхемы, но в последнее время их подключают к одному выходу, но пищалку через конденсатор. Причем другой выход пищалки может быть подключен к любому напряжению: 0V, 5V или 18V.

11. Другие варианты конструкций.
1. Схема на тиристоре с резонансом напряжений. Она хотя проще этой, но она надежнее (не надо беспокоиться об моменте выключения тиристора), дороже (резонансный конденсатор емкостью в 10 раз больше) и тяжелее (конденсаторы тяжее будут). Сейчас ее не реализовать, ибо инверторные тиристоры промышленность перестала выпускать массово.


2. Полумостовой резонансный инвертор, предлагается STM.

Плавка металла методом индукции широко применяется в разных отраслях: металлургии, машиностроении, ювелирном деле. Простую печь индукционного типа для плавки металла в домашних условиях можно собрать своими руками.

Нагрев и плавка металлов в индукционных печах происходят за счет внутреннего нагрева и изменения кристаллической решетки металла при прохождении через них высокочастотных вихревых токов. В основе этого процесса лежит явление резонанса, при котором вихревые токи имеют максимальное значение.

Чтобы вызвать протекание вихревых токов через расплавляемый металл, его помещают в зону действия электромагнитного поля индуктора - катушки. Она может иметь форму спирали, восьмерки или трилистника. Форма индуктора зависит от размеров и формы нагреваемой заготовки.

Катушка индуктора подключается к источнику переменного тока. В производственных плавильных печах используют токи промышленной частоты 50 Гц, для плавки небольших объемов металлов в ювелирном деле используют высокочастотные генераторы, как более эффективные.

Виды

Вихревые токи замыкаются по контуру, ограниченному магнитным полем индуктора. Поэтому нагрев токопроводящих элементов возможен как внутри катушки, так и с внешней ее стороны.

    Поэтому индукционные печи бывают двух типов:
  • канальные, в которых емкостью для плавки металлов являются каналы, расположенные вокруг индуктора, а внутри него расположен сердечник;
  • тигельные, в них используется специальная емкость - тигель, выполненный из жаропрочного материала, обычно съемный.

Канальная печь слишком габаритная и рассчитана на промышленные объемы плавки металлов. Её используют при выплавке чугуна, алюминия и других цветных металлов.
Тигельная печь довольно компактна, ей пользуются ювелиры, радиолюбители, такую печь можно собрать своими руками и применять в домашних условиях.

Устройство

    Самодельная печь для плавки металлов имеет довольно простую конструкцию и состоит из трех основных блоков, помещенных в общий корпус:
  • генератор переменного тока высокой частоты;
  • индуктор - спиралевидная обмотка из медной проволоки или трубки, выполненная своими руками;
  • тигель.

Тигель помещают в индуктор, концы обмотки подключают к источнику тока. При протекании тока по обмотке вокруг нее возникает электромагнитное поле с переменным вектором. В магнитном поле возникают вихревые токи, направленные перпендикулярно его вектору и проходящие по замкнутому контуру внутри обмотки. Они проходят через металл, положенный в тигель, при этом нагревая его до температуры плавления.

Достоинства индукционной печи:

  • быстрый и равномерный нагрев металла сразу после включения установки;
  • направленность нагрева - греется только металл, а не вся установка;
  • высокая скорость плавления и однородность расплава;
  • отсутствует испарение легирующих компонентов металла;
  • установка экологически чиста и безопасна.

В качестве генератора индукционной печи для плавки металла может быть использован сварочный инвертор. Также можно собрать генератор по представленным ниже схемам своими руками.

Печь для плавки металла на сварочном инверторе

Эта конструкция отличается простотой и безопасностью, так как все инверторы оборудованы внутренними защитами от перегрузок. Вся сборка печи в этом случае сводится к изготовлению своими руками индуктора.

Выполняют его обычно в форме спирали из медной тонкостенной трубки диаметром 8-10 мм. Ее сгибают по шаблону нужного диаметра, располагая витки на расстоянии 5-8 мм. Количество витков - от 7 до 12, в зависимости от диаметра и характеристик инвертора. Общее сопротивление индуктора должно быть таким, чтобы не вызывать перегрузки по току в инверторе, иначе он будет отключаться внутренней защитой.

Индуктор можно закрепить в корпусе из графита или текстолита и установить внутрь тигель. Можно просто поставить индуктор на термостойкую поверхность. Корпус не должен проводить ток, иначе замыкание вихревых токов будет проходить через него, и мощность установки снизится. По этой же причине не рекомендуется располагать в зоне плавления посторонние предметы.

При работе от сварочного инвертора его корпус нужно обязательно заземлять! Розетка и проводка должны быть рассчитаны на потребляемый инвертором ток.


В основе системы отопления частного дома лежит работа печи или котла, высокая производительность и долгий бесперебойный срок службы которых зависит как от марки и установки самих отопительных приборов, так и от правильного монтажа дымохода.
вы найдёте рекомендации по выбору твердотопливного котла, а в следующей — познакомитесь с видами и правилами :

Индукционная печь на транзисторах: схема

Существует множество различных способов собрать индукционный нагреватель своими руками. Достаточно простая и проверенная схема печи для плавки металла представлена на рисунке:

    Чтобы собрать установку своими руками, понадобятся следующие детали и материалы:
  • два полевых транзистора типа IRFZ44V;
  • два диода UF4007 (можно также использовать UF4001);
  • резистор 470 Ом, 1 Вт (можно взять два последовательно соединенных по 0,5 Вт);
  • пленочные конденсаторы на 250 В: 3 штуки емкостью 1 мкФ; 4 штуки - 220 нФ; 1 штука - 470 нФ; 1 штука - 330 нФ;
  • медный обмоточный провод в эмалевой изоляции Ø1,2 мм;
  • медный обмоточный провод в эмалевой изоляции Ø2 мм;
  • два кольца от дросселей, снятых с компьютерного блока питания.

Последовательность сборки своими руками:

  • Полевые транзисторы устанавливают на радиаторы. Поскольку схема в процессе работы сильно греется, радиатор должны быть достаточно большими. Можно установить их и на один радиатор, но тогда нужно изолировать транзисторы от металла с помощью прокладок и шайб из резины и пластика. Распиновка полевых транзисторов приведена на рисунке.

  • Необходимо изготовить два дросселя. Для их изготовления медную проволоку диаметром 1,2 мм наматывают на кольца, снятые с блока питания любого компьютера. Эти кольца состоят их порошкового ферромагнитного железа. На них необходимо намотать от 7 до 15 витков проволоки, стараясь выдерживать расстояние между витками.

  • Собирают перечисленные выше конденсаторы в батарею общей емкостью 4,7 мкФ. Соединение конденсаторов - параллельное.

  • Выполняют обмотку индуктора из медной проволоки диаметром 2 мм. Наматывают на подходящий по диаметру тигля цилиндрический предмет 7-8 витков обмотки, оставляют достаточно длинные концы для подключения к схеме.
  • Соединяют элементы на плате в соответствии со схемой. В качестве источника питания используют аккумулятор на 12 В, 7,2 A/h. Потребляемый ток в режиме работы - около 10 А, емкости аккумулятора в этом случае хватит примерно на 40 минут.При необходимости изготовляют корпус печи из термостойкого материала, например, текстолита.Мощность устройства можно изменить, поменяв количество витков обмотки индуктора и их диаметр.
При продолжительной работе элементы нагревателя могут перегреваться! Для их охлаждения можно использовать вентилятор.

Индукционный нагреватель для плавки металла: видео

Индукционная печь на лампах

Более мощную индукционную печь для плавки металлов можно собрать своими руками на электронных лампах. Схема устройства приведена на рисунке.

Для генерации высокочастотного тока используются 4 лучевые лампы, соединенные параллельно. В качестве индуктора используется медная трубка диаметром 10 мм. Установка оснащена подстроечным конденсатором для регулировки мощности. Выдаваемая частота - 27,12 МГц.

Для сборки схемы необходимы:

  • 4 электронные лампы - тетрода, можно использовать 6L6, 6П3 или Г807;
  • 4 дросселя на 100…1000 мкГн;
  • 4 конденсатора на 0,01 мкФ;
  • неоновая лампа-индикатор;
  • подстроечный конденсатор.

Сборка устройства своими руками:

  1. Из медной трубки выполняют индуктор, сгибая ее в форме спирали. Диаметр витков - 8-15 см, расстояние между витками не менее 5 мм. Концы лудят для пайки к схеме. Диаметр индуктора должен быть больше диаметра помещаемого внутрь тигля на 10 мм.
  2. Размещают индуктор в корпусе. Его можно изготовить из термостойкого не проводящего ток материала, либо из металла, предусмотрев термо- и электроизоляцию от элементов схемы.
  3. Собирают каскады ламп по схеме с конденсаторами и дросселями. Каскады соединяют в параллель.
  4. Подключают неоновую лампу-индикатор - она будет сигнализировать о готовности схемы к работе. Лампу выводят на корпус установки.
  5. В схему включают подстроечный конденсатор переменной емкости, его ручку также выводят на корпус.


Для всех любителей деликатесов, приготовленных методом холодного копчения, предлагаем узнать как быстро и просто своими руками сделать коптильню, а познакомиться с фото и видео инструкцией по изготовлению генератора дыма для холодного копчения.

Охлаждение схемы

Промышленные плавильные установки оснащены системой принудительного охлаждения на воде или антифризе. Выполнение водяного охлаждения в домашних условиях потребует дополнительных затрат, сопоставимых по цене со стоимостью самой установки для плавки металла.

Выполнить воздушное охлаждение с помощью вентилятора можно при условии достаточно удаленного расположения вентилятора. В противном случае металлическая обмотка и другие элементы вентилятора будут служить дополнительным контуром для замыкания вихревых токов, что снизит эффективность работы установки.

Элементы электронной и ламповой схемы также способны активно нагреваться. Для их охлаждения предусматривают теплоотводящие радиаторы.

Меры безопасности при работе

  • Основная опасность при работе - опасность получения ожогов от нагреваемых элементов установки и расплавленного металла.
  • Ламповая схема включает элементы с высоким напряжением, поэтому её нужно разместить в закрытом корпусе, исключив случайное прикосновение к элементам.
  • Электромагнитное поле способно воздействовать на предметы, находящиеся вне корпуса прибора. Поэтому перед работой лучше надеть одежду без металлических элементов, убрать из зоны действия сложные устройства: телефоны, цифровые камеры.
Не рекомендуется использовать установку людям с вживлёнными кардиостимуляторами!

Печь для плавки металлов в домашних условиях может использоваться также для быстрого нагрева металлических элементов, например, при их лужении или формовке. Характеристики работы представленных установок можно подогнать под конкретную задачу, меняя параметры индуктора и выходной сигнал генераторных установок - так можно добиться их максимальной эффективности.

Индукционная печь уже давно не новинка – это изобретение существует еще с 19-го века, однако лишь в наше время, с развитием технологий и элементной базы, оно наконец-то начинает повсеместно входить в быт. Раньше в тонкостях работы индукторных печей было множество вопросов, не все физические процессы были до конца понятны, а сами агрегаты имели массу недостатков и использовались только в промышленности, в основном для плавки металлов.

Теперь же, с появлением мощных высокочастотных транзисторов и дешевых микроконтроллеров, совершивших прорыв во всех сферах науки и техники, появились и по-настоящему эффективные индукционные печи, которые можно свободно использовать для бытовых нужд (готовка еды, подогрев воды, отопление) и даже собрать своими руками.

Физические основы и принцип действия печи

Рис.1. Схема индукционной печи

Прежде чем выбрать или изготовить индукторный нагреватель, следует разобраться, что это такое. В последнее время наблюдается вспышка интереса к данной теме, но мало кто имеет полноценное представление о физике магнитных волн. Это породило множество заблуждений, мифов и массу неработоспособных либо небезопасных самоделок. Сделать индукторную печь своими руками можно, но перед этим стоит получить хотя бы элементарные знания.

Индукционная печка по принципу работы основана на явлении электромагнитной индукции. Ключевой элемент здесь – это индуктор, представляющий собой высокодобротную катушку индуктивности. Индукционные печи широко применяются для нагрева или плавления электропроводящих материалов, чаще всего металлов, за счет термического эффекта от наведения в них вихревого электрического тока. Представленная выше схема иллюстрирует устройство этой печи (рис. 1).

Генератором G вырабатывается напряжение переменной частоты. Под действием его электродвижущей силы в катушке индуктора L протекает переменный ток I 1 . Индуктор L совместно с конденсатором C представляет собой колебательный контур, настроенный в резонанс с частотой источника G, благодаря чему эффективность работы печи существенно возрастает.

В соответствии с физическими законами в пространстве вокруг индуктора L возникает переменное магнитное поле H. Это поле может существовать и в воздушной среде, но для улучшения характеристик иногда применяют специальные ферромагнитные сердечники, имеющие лучшую магнитную проводимость в сравнении с воздухом.

Силовые линии магнитного поля проходят сквозь объект W, помещенный внутрь индуктора, и наводят в нем магнитный поток Ф. Если материал, из которого сделана заготовка W, является электропроводным, в ней возникает наведенный ток I 2 , замыкающийся внутри и формирующий вихревые индукционные потоки. В соответствии с законом теплового воздействия электричества вихревые токи разогревают объект W.

Изготовление индуктивного нагревателя


Индукционная печь состоит из двух основных функциональных блоков: индуктора (нагревающая индукционная катушка) и генератора (источника переменного напряжения). Индуктор представляет собой оголенную медную трубку, свернутую в спираль (рис. 2).

Для изготовления своими руками печи мощностью не более 3 кВт индуктор должен быть сделан со следующими параметрами:

  • диаметр трубки – 10 мм;
  • диаметр спирали – 8-15 см;
  • количество витков катушки – 8-10;
  • расстояние межу витками – 5-7 мм;
  • минимальный просвет в экране – 5 см.

Нельзя допускать соприкосновения соседних витков катушки, соблюдайте указанное расстояние. Индуктор никаким образом не должен соприкасаться с защитным экраном печи, зазор между ними должен быть не меньше указанного.

Изготовление генератора


Рис.3. Схема на лампах

Стоит отметить, что индукционная печь для своего изготовления требует хотя бы средних радиотехнических навыков и умений. Особенно важно обладать ими для создания второго ключевого элемента – высокочастотного генератора тока. Ни собрать, ни воспользоваться сделанной своими руками печью не получится без этих знаний. Более того, это может быть опасно для жизни.

Для тех же, кто берется за это дело со знанием и пониманием процесса, существуют различные способы и схемы, по которым может быть собрана индукционная печь. Выбирая подходящую схему генератора, рекомендуется отказываться от вариантов с жестким спектром излучения. К ним относится широко распространенная схема с использованием тиристорного ключа. Высокочастотное излучение от такого генератора способно создать мощнейшие помехи для всех окружающих радиоприборов.

Еще с середины 20 века среди радиолюбителей большим успехом пользовалась индукционная печь, собранная на 4-х лампах. Ее качество и КПД далеко не самые лучшие, а радиолампы в наше время труднодоступны, тем не менее многие продолжают собирать генераторы именно по этой схеме, так как у нее есть большое преимущество: мягкий, узкополосный спектр генерируемого тока, благодаря которому такая печь излучает минимум помех и максимально безопасна (рис. 3).

Настройка режима работы этого генератора производится при помощи переменного конденсатора C. Конденсатор обязательно должен быть с воздушным диэлектриком, зазор между его пластинами должен составлять не менее 3 мм. На схеме также присутствует неоновая лампа Л, служащая индикатором.

Схема универсального генератора


Современные индукционные печи работают на более совершенных элементах – микросхемах и транзисторах. Большим успехом пользуется универсальная схема двухтактного генератора, развивающая мощность до 1 кВт. Принцип работы основан на генераторе независимого возбуждения, при этом индуктор включен в режиме моста (рис. 4).

Достоинства двухтактного генератора, собранного по такой схеме:

  1. Возможность работать на 2-й и 3-й моде помимо основной.
  2. Присутствует режим поверхностного нагрева.
  3. Диапазон регулирования 10-10000 кГц.
  4. Мягкий спектр излучения во всем диапазоне.
  5. Не нуждается в дополнительной защите.

Перестройка частоты осуществляется с помощью переменного резистора R 2 . Рабочий диапазон частот задается конденсаторами C 1 и C 2 . Межкаскадный согласующий трансформатор должен быть с кольцевым ферритовым сердечником сечением не менее 2 кв.см. Намотка трансформатора делается из эмалированного провода сечением 0,8-1,2 мм. Транзисторы нужно усадить на общий радиатор площадью от 400 кв.см.

Заключение по теме

Излучаемое индукторной печкой электромагнитное поле (ЭМП) оказывает воздействие на все проводники вокруг. В том числе происходит влияние на организм человека. Внутренние органы под действием ЭМП равномерно прогреваются, повышается общая температура тела во всем объеме.

Поэтому при работе с печью важно соблюдать определенные меры предосторожности во избежание негативных последствий.

Прежде всего, корпус генератора должен быть экранирован при помощи кожуха из листов оцинкованного железа или сетки с мелкими ячейками. Это снизит интенсивность облучения в 30-50 раз.

Также следует иметь в виду, что в непосредственной близости от индуктора плотность энергетического потока будет выше, особенно вдоль оси намотки. Поэтому индукционная катушка должна быть расположена вертикально, а за нагревом лучше наблюдать издалека.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!